Solutions below are in response to student requests. The.

- 2. Let V be a finite dimensional vector space and $T, U : V \to V$ be non-zero linear maps that satisfy $R(T) \cap R(U) = \{0_V\}$. Prove that T and U are linearly independent in $\mathcal{L}(V)$, the space of linear maps from V to V.
 - pf. Suppose what T= >U for some >G IF. let x EV, x = O. Set T(x) = >U(2x) = U(2x) = . The w & R CT) A U (T), so w= 0. Since x was arbitrarily chosen, T(x)=0 for all x. But T was assumed to be a non-zero mp, so T # AU.

4. Let B be a fixed $n \times n$ matrix with entries in F, and define $\Phi: M_{n \times n}(F) \to M_{n \times n}(F)$ by $\Phi(A) = BAB^{-1}.$ HW6 (a) Show that Φ is linear (Hint: use Theorem 2.10(a) from the book).

(b) Show that Φ is an isomorphism.

5. Suppose V, W are finite-dimensional vector spaces and $T: V \to W$ is an isomorphism. Suppose V_0 is a subspace of V. Show that $T(V_0)$ (that is, the set of all vectors of the form T(v) for $v \in V_0$ is a subspace of W of the same dimension as V_0 .

(9)
$$\begin{split} & \left(\lambda A_{1} + A_{2} \right) = B(\lambda A_{1} + A_{2}) B^{-1} \\ &= B\lambda A_{1} B^{-1} + BA_{2} B^{-1} \\ &= \lambda BA_{2} BA_{2} B^{-1} \\ &$$

HW7

- 1. Let U and W be vector spaces. We define the product $U \times W$ to mean the set of ordered pairs (u, w) with $u \in U$ and $w \in W$ with operations $(u_1, w_1) + (u_2, w_2) = (u_1 + u_2, w_1 + w_2)$ and $\lambda(u, w) = (\lambda u, \lambda w)$. It is easy to see that $U \times W$ is a vector space under these operations.
 - (a) Show that $\dim(U \times W) = \dim U + \dim W$.
 - (b) Now suppose that U and W are both subspaces of a vector space V and let $T: U \times W \longrightarrow V$ be the map sending (u, w) to u + w. Show that dim $N(T) = \dim(U \cap W)$.

(a) S-ppose on of U, W is rat finite-dimensiond. The UXW is
also infinite linearisand.
Suppose U, W both finite dimensionalis let
$$\beta_{u} = \frac{2}{2}u_{i_{1}...}u_{k}^{3}$$

be a basis for U and $\beta_{u} = \frac{2}{2}w_{i_{1}...}w_{u}^{3}$ a basis for W. We claim
that $\beta = \frac{2}{2}(u_{i_{1}}, 0_{u})_{1}(u_{2_{1}}, 0_{u})_{1}..., 1(u_{k_{1}}, 0_{u})_{1}(0_{v_{1}}, w_{u})^{3}$ is a
basis for UXW. We are see that β spans UXW, as if
 $(U_{1}, w) \in U_{X}W$, $U = \frac{2}{2}a_{i}u_{i_{1}}, w = \frac{2}{2}b_{j}w_{j}$, tou (u_{i}, w)
 $= (2a_{iu_{i_{1}}} + 2b_{j}w_{j})^{i_{i_{1}}}$
Suppose $\lambda_{i_{1}}(u_{i_{1}}, 0_{u}) + 2b_{j}(0, w_{j})$.
Suppose $\lambda_{i_{1}}(u_{i_{1}}, 0_{u}) + \dots + \lambda_{k}(u_{i_{l_{1}}}, 0_{u}) + d_{i_{1}}(0_{v_{1}}, w_{u}) + \dots + d_{m}(0_{v_{i}}, w_{u}) = 0$
Then $\lambda_{i_{1}}u_{i_{1}} + \dots + \lambda_{i_{k}}(u_{i_{l_{1}}}, 0_{u}) + d_{i_{1}}(0_{v_{1}}, w_{u}) = 0$. Hence
 $\lambda_{i_{1}} = \dots = \lambda_{k} = d_{i} = \dots = d_{m} = 0$, go β is independent.
Then $A_{m}(U_{X}W) = k + m = d_{m} U + d_{m} W$.

(b)
$$N(T) = \hat{Z}(u,w) \in UXW | W = -u\hat{Z}$$
. If $-u \notin W$, the $u \notin W$, so
 $u,w \notin UNW$. The $N(T) = \hat{Z}(u,-w) | u \notin UNW\hat{Z}$. To see this,
let $\Phi: UNW \longrightarrow N(T)$ be given by $\Phi(u) = (u,-u)$. Then
 $\hat{\Phi}$ is one-to-one, as :f $\Phi(u) = 0$, then $(u,-u) = (0,0)$, so $u = 0$.
 $\hat{\Phi}$ is outo, as if $(u,w) \notin N(T)$, then $w = -u$ and $u \notin UNW$.
So $\hat{\Phi}$ is on iso northwer, many test UNW , $N(T)$ have
 $cgual dimension.$

- (a) Let A be an $m \times n$ (m rows, n columns) matrix and B be an $n \times p$ matrix. Suppose that rank(A) = m and rank(B) = n. Find the rank of AB. Justify your answer.
- (b) Prove or give a counter example to the following statement: If the $m \times n$ (*m* rows, *n* columns) matrix *A* has rank *m*, then the system Ax = b is consistent for any choice of *b*.
- (c) Prove or give a counter example to the following statement: For two $m \times n$ matrices A, B, we must have $\operatorname{rank}(A + B) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$.

(a) vank (AB) = route (LAB) = vank (LALB). Since LA: IF" has vanle m, LA is outo. Similarly LB is outo. Hence LAB is the composition of outo Mops, al must be outo. LAB: IF -> IF , so vank (LAB)= m = vank (LAB). (See HW5 (3).

(b) This is true. Since miss the nexternan rank (A1b), and A has rank m, (A1b) also has route m.

(1) This is false. let
$$A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.