The solutions below ore in response to student requests.
2. Let V be a finite dimensional vector space and $T, \vec{U}: V \rightarrow \bar{V}$ be non-zero linear maps that satisfy $R(T) \cap R(U)=\left\{0_{V}\right\}$. Prove that T and U are linearly independent in $\mathcal{L}(V)$, the space of linear maps from V to V.
pf. Suppose tut $T=\lambda U$ for some $\lambda \in \mathbb{F}$. Let $x \in V, x \neq 0$. Set $T(x)=\lambda U(x)=U(\lambda x)=\omega$. Then $w 6 R(T) \cap U(T)$, so $w=0$. Since x was arbitrarily chosen, $T(x)=0$ for all x. But T was assumed to be a non-zero mp, so $T \neq \lambda U$.
4. Let B be a fixed $n \times n$ matrix with entries in F, and define $\Phi: M_{n \times n}(F) \rightarrow M_{n \times n}(F)$ by
$\Phi(A)=B A B^{-1}$.
(HuN 6 (a) Show that Φ is linear (Hint: use Theorem 2.10(a) from the book).
(b) Show that Φ is an isomorphism.
5. Suppose V, W are finite-dimensional vector spaces and $T: V \rightarrow W$ is an isomorphism. Suppose V_{0} is a subspace of V. Show that $T\left(V_{0}\right)$ (that is, the set of all vectors of the form $T(v)$ for $\left.v \in V_{0}\right)$ is a subspace of W of the same dimension as V_{0}.
(4)(a) $\Phi\left(\lambda A_{1}+A_{2}\right)=B\left(\lambda A_{1}+A_{2}\right) B^{-1}$

$$
\begin{aligned}
& =B \lambda A_{1} B^{-1}+B A_{2} B^{-1} \\
& =\lambda B A_{1} B^{-1}+B A_{2} B^{-1} \\
& =\lambda \Phi\left(A_{1}\right)+\Phi\left(A_{2}\right) .
\end{aligned}
$$

(b) Suppose $A \in M_{2}\left[(\mathbb{F})\right.$ and $\Phi(A)=0$. Then $B A B^{-1}=0$, so $A=B^{-1} O B=0$.

Hence $\Phi 3$ ove-to-ove.
let $C \in M_{2}(\mathbb{F})$; The $B^{-1} C B \in M_{2}(\mathbb{F})$.
$\Phi\left(B^{-1} C B\right)=B\left(B^{-1} C B\right) B^{-1}=I_{n} C I_{n}=C$. Hence ΦB onto.
(You call aloe slow tat $\left.\underline{\Phi}: M_{2} C F\right), \frac{1}{\Phi}(A)=B^{-1} A B$, is an inures for Φ.)
(5) Since $O_{\nu} \in v_{0}, T\left(\partial_{\nu}\right)=0_{w} \in T\left(v_{0}\right)$. Suppose $w_{1}, w_{2} \in T\left(v_{0}\right)$. Let $w_{1}=T\left(v_{1}\right)$ al $w_{2}=T\left(v_{2}\right)$ where $v_{1}, v_{2} \in v_{0}$. Then $w_{1}+w_{2}=T\left(v_{1}\right)+T\left(v_{2}\right)=T\left(v_{1}+v_{2}\right)$. Since V_{0} is a subspace, $V_{1}+V_{2} \in V_{0}$. So $w_{1}+w_{2} \in T\left(V_{0}\right)$. let $\lambda \in \mathbb{F}$. the $\lambda \omega_{1}=\lambda T\left(v_{1}\right)=T\left(\lambda v_{1}\right)$. Since V_{0} is a sulaspace, $\lambda V_{1} \in V_{0}$. So $\lambda w_{1} \in T\left(V_{0}\right)$. As $\vec{O} \in T\left(V_{0}\right)$ ore $T\left(V_{0}\right)$ is closed under vector addition and scalar multiplication, $T\left(V_{0}\right)$ is a subspace of W.
let $\beta=\left\{v_{1}, v_{21}, \ldots v_{1 c}\right\}$ be a basis for V_{0}. Ken $T(\beta)$ spans $T\left(v_{0}\right)$, a) $T\left(v_{0}\right)=R\left(\left.T\right|_{v_{0}}\right)$, where $T l_{v_{0}}$ denotes T restricted to V_{0}. Spore $a_{1} T\left(u_{1}\right)+\cdots+a_{k} T\left(v_{k}\right)=0$. Then $T\left(a_{1} v_{1}+\cdots+a_{k} v_{k}\right)=0$, so $a_{1} v_{1}+\ldots+a_{k} v_{k} \in \operatorname{kev}(T)$. Bot T is one-to-one, so $a_{1} v_{1}+\ldots+a_{k} v_{k}=0$. Since β is indepanht, $a_{1}=a_{2}=\ldots=a_{k}=0$. So $T(\beta)$ is indupent. Hence $T(\beta)$ is a basis for $T\left(V_{0}\right)$, al V_{0} or $T\left(V_{0}\right)$ hove equal dimension. (We also see that ore-to-om transformations corves inbeperbent sets to independent sets.)

Ho 7

1. Let U and W be vector spaces. We define the product $U \times W$ to mean the set of ordered pairs (u, w) with $u \in U$ and $w \in W$ with operations $\left(u_{1}, w_{1}\right)+\left(u_{2}, w_{2}\right)=\left(u_{1}+u_{2}, w_{1}+w_{2}\right)$ and $\lambda(u, w)=(\lambda u, \lambda w)$. It is easy to see that $U \times W$ is a vector space under these operations.
(a) Show that $\operatorname{dim}(U \times W)=\operatorname{dim} U+\operatorname{dim} W$.
(b) Now suppose that U and W are both subspaces of a vector space V and let $T: U \times W \longrightarrow V$ be the map sending (u, w) to $u+w$. Show that $\operatorname{dim} N(T)=\operatorname{dim}(U \cap W)$.
(a) Suppose an of U, W is not finite-dereesial. Ten $U \times W$ is also infinite limeesianal.
Suppose U, w boter finite dimensional. Let $\beta_{u}=\left\{u_{1}, \ldots u_{k}\right\}$ be a basis for U all $\beta_{w}=\left\{w_{1}, \ldots, w_{m}\right\}$ a basis for W. We clam that $\left.\beta=\sum\left(u_{1}, o_{w}\right),\left(u_{2}, 0_{w}\right), \ldots,\left(u_{k}, O_{w}\right),\left(0_{v}, w_{1}\right)_{1} \ldots,\left(0_{v}, w_{m}\right)\right\}$ is a basis for $U \times w$, we an see that β s spans $u \times w$, as if

$$
\begin{aligned}
& (u, w) \in U \times w, u=\sum_{i=1}^{k} a_{1} u_{i}, w=\sum_{j=1}^{m_{j}} b_{j} w_{j}, \text { ton }(u, w) \\
& \quad=\left(\sum a_{i} u_{i}, \sum b_{j} w_{j}\right) \\
& =\sum a_{i}\left(u_{i}, o_{w}\right)+\sum b_{j}\left(0, w_{j}\right) .
\end{aligned}
$$

Suppose $\lambda_{1}\left(u_{1}, O_{w}\right)+\ldots+\lambda_{k}\left(u_{k}, O_{w}\right)+\alpha_{1}\left(O_{v}, w_{c}\right)+\cdots+\alpha_{m}\left(O_{v}, w_{m}\right)=0$.
Then $\lambda_{1} u_{1}+\cdots+\lambda_{1 k} u_{1}=0$ all $\alpha_{1} \omega_{1}+\cdots+\alpha_{m} w_{m}=0$. Hence
$\lambda_{1}=\ldots=\lambda_{k}=\alpha_{1}=\ldots=\alpha_{m}=0$, so β is inelpenelt.
Then $\operatorname{din}(U \times w)=k+m=\operatorname{dim} U+\operatorname{dim} w$.
(b) $\quad N(T)=\{(u, w) \in U \times w \mid w=-u\}$. If $-u \in w$, ten $u \in w$, so $u, w \in U \cap \omega$. Tin $N(T)=\{(u,-u) \mid u \in U \cap \omega \xi$. To see the rs, Let $\Phi: U \cap \omega \rightarrow N(T)$ be gen by $\Phi(u)=(u,-u)$. Thun
雨 is ove-torov, as if $\Phi(u)=0$, tar $(u,-u)=(0,0)$, so $u=0$.
Φ is outdo, as if $(u, w) \in N(T)$, ten $w=-u$ and $u \in U \cap \omega$.
So $亠$ is on 30 mophisun, many teat $U n w, N(T)$ hove equal dimersor.
(a) Let A be an $m \times n$ (m rows, n columns) matrix and B be an $n \times p$ matrix. Suppose that $\operatorname{rank}(A)=m$ and $\operatorname{rank}(B)=n$. Find the rank of $A B$. Justify your answer.
(b) Prove or give a counter example to the following statement:

If the $m \times n$ (m rows, n columns) matrix A has rank m, then the system $A x=b$ is consistent for any choice of b.
(c) Prove or give a counter example to the following statement: For two $m \times n$ matrices A, B, we must have $\operatorname{rank}(A+B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.
(a) $\operatorname{rank}(A B)=\operatorname{rark}\left(L_{A B}\right)=\operatorname{rank}\left(L_{A} L_{B}\right)$. Since $L_{A}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ has rank, L_{A} is onto. Similarly L_{B} is onto. Hence $L_{A B}$ is ter composition of onto mops, al must be outs. $L_{A B}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$, so $\operatorname{rank}\left(L_{A B}\right)=m=\operatorname{rank}(A B)$. (See HWS G3).
(b) This is true. Since m is th raxeunn rank $(A \mid b)$, of
A has rake $m,(A \mid b)$ also has rack m.
(1) This in false. Let $A=\left[\begin{array}{l}10 \\ 00\end{array}\right]$ at $B=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.

